Student Teacher Meetings

The student teacher meeting is a scheduling problem, i.e. a problem where events are scheduled to take place at a specific place at a specific time. This problem is actually rather hard to solve, and the problem really shows the difference between the open-source solvers and commercial solvers.

Problem

- Minimize the total meeting time for the students and parents.

Sets

- Students: $s \in$ Students $=\{1,2,3,4,5,6,7,8,9,10,11,12,13,14,15\}$
- Teachers: $t \in$ Teachers $=\{1,2,3,4,5,6\}$
- Timeslots: $t s \in$ TimeSlots $=\{1,2,3,4,5,6,7,8,9,10,11\}$

Parameters

- StudentTeacherMeetings $s_{s, t}$: Incidence matrix, where StudentTeacherMeetings $s_{s, t}=$ 1 if student s has to have a meeting whith teacher t, otherwise 0 .

Decision variables

- Should student s meet teacher t in timeslot $t s: x_{t, t s}^{s} \in\{0,1\}$
- The latest meeting for student $s: y_{s} \geq 0$.

Model

Objective:

- Minimize the summed last meeting time for all students:

$$
\sum_{s} y_{s}
$$

Constraints:

- Ensure that all required student teacher meetings are scheduled:

$$
\sum_{t s} x_{t, t s}^{s}=\text { StudentTeacherMeetings } s_{s, t} \forall s, t
$$

- Each student can only meet one teacher at a time:

$$
s_{u m} x_{t, t s}^{s}=1 \forall s, t s
$$

- Each teacher can only meet one student at a time:

$$
\operatorname{sum}_{s} x_{t, t s}^{s}=1 \forall t, t s
$$

- Force the value of y_{s} to take the value of the last timeslot $t s$ for each student:

$$
t s \cdot \sum_{t} x_{t, t s}^{s} \leq y_{s} \forall s, t s
$$

Notice the trick in the last constraint: The value of the sum can only take the value 0 or 1 . If it is 1 the student has a meeting at that timeslot. This value is multiplied by the index of the timeslot $t s$. And this is set as a lowerbound of y_{s}. The last meeting, hence will hence force the largest value.

The full model in Julia/JuMP, available with the name

```
StudentTeacherMeetings.jl
```

from the book web-site, is given below:

```
#*************************************************************************
# Student Teacher Meeting, "Mathematical Programming Modelling" (42112)
#************************************************************************
# Intro definitions
using JuMP
using HiGHS
#************************************************************************
```


Data

include("StudentTeacherMeetingData_15_6.jl")
\#include("StudentTeacherMeetingData_20_6.jl")
\#include("StudentTeacherMeetingData_25_10.jl")
\#include("StudentTeacherMeetingData_25_8.jl")
\#include("StudentTeacherMeetingData_30_10.jl")
\#include("StudentTeacherMeetingData_40_10.jl")

S: no of students : in data file

T: no of teachers : in data file

TS: no of timeslots : in data

println("Students: \$(S) Teachers: \$(T) Timeslots: \$(TS)")
total_no_meetings=sum(StudentTeacherMeetings[:,:])
println("Total no. of meetings: \$(total_no_meetings)")
\#**
\#**

Model

stmeet = Model(HiGHS.Optimizer)

1 if student s has a meeting with teacher t in time ts

@variable(stmeet, x[1:S,1:T,1:TS],Bin)
for s=1:S
for t=1:T
if StudentTeacherMeetings[s,t]==0
for ts=1:TS
fix(x[s,t,ts],0; force = true)
end
end
end
end

last meeting of student s

@variable(stmeet, y[1:S] >= 0)

Minimize summed Inconvenience

@objective(stmeet, Min, sum(y[s] for s=1:S))

meetings has to occur (or not occur)

@constraint(stmeet, [s=1:S,t=1:T], sum(x[s,t,ts] for ts=1:TS) == StudentTeacherMeetings[s

only one meeting pr timeslot for each student s

@constraint(stmeet, [s=1:S,ts=1:TS], sum(x[s,t,ts] for t=1:T) <= 1)

only one meeting pr timeslot for each teacher t

```
```

@constraint(stmeet, [t=1:T,ts=1:TS], sum(x[s,t,ts] for s=1:S) <= 1)

force value of y to last meeting for each student

@constraint(stmeet, [s=1:S,ts=1:TS], ts*sum(x[s,t,ts] for t=1:T) <= y[s])
\#***
\#**

solve

optimize!(stmeet)
println("Termination status: \$(termination_status(stmeet))")
\#**
\#**
println("---
if termination_status(stmeet) == MOI.OPTIMAL
println("RESULTS:")
println("objective = \$(objective_value(stmeet))")
println("Minimal num of meetings: \$(sum(StudentTeacherMeetings[:,:]))")
println("Solve time: \$(solve_time(stmeet))")
else
println(" No solution")
end
println("--");
\#**

```
```

