
Groceries

The Groceries problem illustrates the two most important routing problems in
Operations Resarch: The Travelling Salesman Problem (TSP) and the Vehicle
Routing Problem (VRP). Both problems have been studied intensely over the
last 50 years and a large number of practical application, like delivering gro-
ceries. Both TSP and VRP are also computationally hard optimization prob-
lems, even for a small problem sizes. Here we focus on relatively simple models.
If larger problems needs to be solved, more advanced algorithmic approaches
are needed.

Problem 1

• Minimize the travel distance of the van.

Sets

• Set of Customers, the first being the grocery: c ∈ Customers = {1, 2, 3, 4, 5, 6}

Parameters

• Coordc,coord: The x and x coordinates of customer c used to calculate the
Distance matrix

• Distancec1,c2: The (Euclidean) distance between customer c1 and c2,
calculated based on the coordinates.

Decision variables

• Drive van from customer c1 to c2 : xc1,c2 ∈ {0, 1}. Notice that the variable
xc,c, i.e. driving from node c to node c does not make any sense, so in the
Julia/JuMP program we fix it to zero, but not in the model below.
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Model

Objective:

• Minimize the driven distance:∑
c1,c2

Distancec1,c2 · xc1,c2

Constraints:

• You have to drive to each customer exactly once:∑
c

2xc2,c1 = 1 ∀c1

• You have to drive away from each customer exactly once:∑
c

2xc1,c2 = 1 ∀c1

The above model is very simple and fast to solve, but has a serious issue (Prob-
lem 2 below).

The full model in Julia/JuMP, available with the name

Groceries1.jl

from the book web-site, is given below:

#************************************************************************

# Groceries1, "Mathematical Programming Modelling" (42112)

#************************************************************************

# Intro definitions

using JuMP

using HiGHS

#************************************************************************

#************************************************************************

# PARAMETERS

C=6 # no of customers

coord = zeros(C,2)

coord[1,1]=0; coord[1,2]=0

coord[2,1]=104; coord[2,2]=19
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coord[3,1]=370; coord[3,2]=305

coord[4,1]=651; coord[4,2]=221

coord[5,1]=112; coord[5,2]=121

coord[6,1]=134; coord[6,2]=515

Distance = zeros(Float64,C,C)

for c1 in 1:C

for c2 in 1:C

Distance[c1,c2]= sqrt( (coord[c1,1]-coord[c2,1])*(coord[c1,1]-coord[c2,1]) + (coord[c1,2]-coord[c2,2])*(coord[c1,2]-coord[c2,2]) )

end

end

#************************************************************************

#************************************************************************

# Model

TSP = Model(HiGHS.Optimizer)

@variable(TSP, x[1:C,1:C],Bin)

for c in 1:C

fix(x[c,c],0; force = true)

end

# Minimize TSP distance

@objective(TSP, Min,

sum(Distance[c1,c2]*x[c1,c2] for c1=1:C, c2=1:C))

# you enter all cities

@constraint(TSP, city_enter_con[c1=1:C],

sum(x[c2,c1] for c2=1:C)==1)

# you exit all cities

@constraint(TSP, city_exit_con[c1=1:C],

sum(x[c1,c2] for c2=1:C)==1)

#************************************************************************

#************************************************************************

# solve

optimize!(TSP)

println("Termination status: $(termination_status(TSP))")

#************************************************************************

#************************************************************************

println("objective = $(objective_value(TSP))")

println("Solve time: $(solve_time(TSP))")

println(round.(Int8,value.(x)))

#************************************************************************
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If you look at the solution, it is clear that the solution consists of two separate
loops: c1 → c2 → c5 → c1 and c3 → c6 → c4 → c3. The problem is that these
routes actually satisfy the constraints, but constraints are missing which will dis-
allow loops. What is needed is the addition of a new variable and one constraint.

Problem 2

• Minimize the travel distance of the van, now without loops.

Parameters

• C the number of cities

Decision variables

• Counting variable uc ≥ 0. If a customer following another customer has
to have a counting variable 1 higher, except the first one.

Constraints:

• The constraint which sets the counting variable for each customer:

uc1 + 1 ≤ uc2 + C(1− xc1,c2) ∀ c1, c2|c1 ̸= c2 ∧ c2! = 1

The full model in Julia/JuMP, available with the name

Groceries2.jl

from the book web-site, is given below:

#************************************************************************

# GroceriesTSP2, "Mathematical Programming Modelling" (42112)

#************************************************************************

# Intro definitions

using JuMP

using HiGHS

#************************************************************************

#************************************************************************

# PARAMETERS

C=6 # no of customers

coord = zeros(C,2)
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coord[1,1]=0; coord[1,2]=0

coord[2,1]=104; coord[2,2]=19

coord[3,1]=370; coord[3,2]=305

coord[4,1]=651; coord[4,2]=221

coord[5,1]=112; coord[5,2]=121

coord[6,1]=134; coord[6,2]=515

Distance = zeros(Float64,C,C)

for c1 in 1:C

for c2 in 1:C

Distance[c1,c2]= sqrt( (coord[c1,1]-coord[c2,1])*(coord[c1,1]-coord[c2,1]) + (coord[c1,2]-coord[c2,2])*(coord[c1,2]-coord[c2,2]) )

end

end

#************************************************************************

#************************************************************************

# Model

TSP = Model(HiGHS.Optimizer)

@variable(TSP, x[1:C,1:C],Bin)

for c1 in 1:C

fix(x[c1,c1],0; force = true)

end

@variable(TSP, u[1:C] >= 0)

# Minimize TSP distance

@objective(TSP, Min,

sum(Distance[c1,c2]*x[c1,c2] for c1=1:C, c2=1:C))

# you enter all cities

@constraint(TSP, city_enter_con[c1=1:C],

sum(x[c2,c1] for c2=1:C)==1)

# you exit all cities

@constraint(TSP, city_exit_con[c1=1:C],

sum(x[c1,c2] for c2=1:C)==1)

# counter constraint

@constraint(TSP, counter_con[c1=1:C,c2=2:C,c1!=c2],

u[c1] + 1 <= u[c2] + C*(1-x[c1,c2])

)

#************************************************************************

#************************************************************************
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# solve

optimize!(TSP)

println("Termination status: $(termination_status(TSP))")

#************************************************************************

#************************************************************************

println("objective = $(objective_value(TSP))")

println("Solve time: $(solve_time(TSP))")

println("u: ", round.(Int64,value.(u)))

#************************************************************************

If you now look at the solution, the solution is now one tour visiting all cus-
tomers: c1 → c2 → c4 → c3 → c6 → c5 → c1. But the new tour is more
expensive. Notice also the way the extra constraint, both a condition to ensure
that c1 ̸= c2, in julia c1! = c2. But the second requirement, that the first
customer, the grocery, can reset the uc counting variable, is simply done by
numbering: c2 = 1 : C.

When there are too many customers, with too large demands, several van’s are
necessary. This complicates the problem significantly and creates the Vehicle
Routing Problem (VRP). In this version of the problem, K (3) vans needs to
be routed to customers such that: All customers get their goods and that the
capacity, of 26, is not exceeded. Hence we need three ”TSP” like routes, and the
simple solution is: K routes leave the grocery, customer 1, and K routes needs
to arrive at the customer 1. But all the customers have the same requirements
as before. Finally, each route cannot exceed the capacity. Here we utilize the uc

counting variable, to count how much consumer goods the vans transport until
this node. So instead of adding 1 unit we add qc unit. Finally, we change the
domain of the uc variable to be the capacity of vans, hence ensuring that not
too many customers are visited by a van.

Problem 3

• Minimize the travel of all the vans

New Parameters

• K: Number of vans, here 3

• Q: Van capacity, here 26
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Changed decision variables

• Counting variable 0 ≥ uc ≤ Q. If a customer following another customer
has to have a counting variable qc higher, except the first one.

Model

Objective:

• Minimize the driven distance:∑
c1,c2

Distancec1,c2 · xc1,c2

Constraints:

• You have to drive to each customer (except the grocer) exactly once:∑
c

2xc2,c1 = 1 ∀ c1 | c1 ̸= 1

• K vans have to drive away from the grocer):∑
c

2xc1,c2 = 1 ∀ c1 | c1 ̸= 1

• You have to drive away from each customer (except the grocer) exactly
once: ∑

c

2x1,c2 = K

• K vans have to drive to the grocer:∑
c

2xc2,1 = K

• The constraint which sets the counting variable for each customer:

uc1 + qc1 ≤ uc2 + C(1− xc1,c2) ∀ c1, c2 | c1 ̸= c2 ∧ c2 ̸= 1

The full model in Julia/JuMP, available with the name

Groceries3.jl

from the book web-site, is given below:
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#************************************************************************

# Wehicle Routing, "Mathematical Programming Modelling" (42112)

using JuMP

using HiGHS

#************************************************************************

#************************************************************************

# PARAMETERS

C=13 # no of customers

# customer coordinates

coord = zeros(C,2)

coord[1,1]=0; coord[1,2]=0

coord[2,1]=104; coord[2,2]=19

coord[3,1]=370; coord[3,2]=305

coord[4,1]=651; coord[4,2]=221

coord[5,1]=112; coord[5,2]=121

coord[6,1]=134; coord[6,2]=515

coord[6,1]=134; coord[6,2]=515;

coord[7,1]=797; coord[7,2]=424;

coord[8,1]=347; coord[8,2]=444;

coord[9,1]=756; coord[9,2]=141;

coord[10,1]=304; coord[10,2]=351;

coord[11,1]=236; coord[11,2]=775;

coord[12,1]=687; coord[12,2]=310;

coord[13,1]=452; coord[13,2]=57;

# distance between customers

Distance = zeros(Float64,C,C)

for c1 in 1:C

for c2 in 1:C

Distance[c1,c2]= sqrt( (coord[c1,1]-coord[c2,1])*(coord[c1,1]-coord[c2,1]) + (coord[c1,2]-coord[c2,2])*(coord[c1,2]-coord[c2,2]) )

end

end

# size of deliveries

q = zeros(C)

q[1]=0;

q[2]=3;

q[3]=9;

q[4]=7;

q[5]=11;

q[6]=11;

q[7]=6;

q[8]=7;

q[9]=7;
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q[10]=2;

q[11]=4;

q[12]=2;

q[13]=8;

# number of vans

K=3

# capacity of each of the vans

Q=26

#************************************************************************

#************************************************************************

# Model

VRP = Model(HiGHS.Optimizer)

@variable(VRP, x[1:C,1:C],Bin)

for c in 1:C

fix(x[c,c],0; force = true)

end

@variable(VRP, 0 <= u[1:C] <= Q)

# Minimize VRP distance

@objective(VRP, Min,

sum(Distance[c1,c2]*x[c1,c2] for c1=1:C, c2=1:C))

# every city is entered by one truck, except the depot on node 1

@constraint(VRP, [c1=2:C],

sum(x[c2,c1] for c2=1:C) == 1)

# every city is exited by one truck, except the depot on node 1

@constraint(VRP, [c1=2:C],

sum(x[c1,c2] for c2=1:C) == 1)

# K trucks going out of node 1

@constraint(VRP,

sum(x[1,c2] for c2=2:C) == K)

# K trucks going in of node 1

@constraint(VRP,

sum(x[c2,1] for c2=2:C) == K)

# counter constraint

@constraint(VRP, [c1=2:C,c2=1:C,c1!=c2],

u[c1] + q[c1] <= u[c2] + Q*(1-x[c1,c2]) )
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#************************************************************************

#************************************************************************

# solve

optimize!(VRP)

println("Termination status: $(termination_status(VRP))")

#************************************************************************

#************************************************************************

#print(VRP)

println("objective = $(objective_value(VRP))")

println("Solve time: $(solve_time(VRP))")

#************************************************************************

If you look at the solution, it is clear that the solution consists of two separate
loops: c1 → c2 → c5 → c1 and c3 → c6 → c4 → c3. The problem is that these
routes actually satisfy the constraints, but constraints are missing which will dis-
allow loops. What is needed is the addition of a new variable and one constraint.
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