Chair Logistics

The Linear Programming assignment Chair Distribution does not take into ac-
count that chairs cannot be transported one by one, but on trucks. Here a
simple extension, using integer variables, makes the model more predcise.

Problem

e Minimize the total truck transportation costs.

Sets
e p € Plants = {P1, P2}
e d € Depots = {D1, D2, D3, D4}
e r € Retailer = {R1, R2, R3, R4, R5, RG}

Parameters

e PlantCapacity,: Maximal chair production capacity for plant p
e DepotCapacityy: Chair capacity at depot d

o Retailer Requirements,: Chair demand at retailer r

e F: The cost of transporting one chair one kilometer

e PDdist, 4: Distance in kilometers from plant p to depot d

e PRdist,,: Distance in kilometers from plant p to retailer r

e DRdist, 4: Distance in kilometers from depot d to retailer r

e TruckCostKM = 1.5: Cost in € pr. truck pr. kilometer

o TruckCap = 40: Number of chairs which can be transported on a truck

Decision variables
e Amount of chairs transported from plant p to depot d: xpd, 4 > 0.
e Amount of chairs transported from plant p to retailer r: xpry,, > 0.

e Amount of chairs transported from depot d to retailer r: zdrq, > 0.

Number of trucks transporting from plant p to depot d: ypd, 4 € Z7T.

Number of trucks transporting from plant p to retailer r: ypr,, € Z7.

Number of trucks transporting from depot d to retailer r: ydry, € Z+.

Model

Objective:

e Total truck transport costs minimized:

> TruckCostKM - PDdisty 4 - ypdp.a +

p,d

> TruckCostKM - PRdisty,, - ypry., +

p,r

Z TruckCostKM - DRdistq,, - ydrq ,
d,r

Constraints:

e Production capacity limit for plant p:

prdp,d < PlantCapacity, V p
d

e Chair capacity limit in depot d:

Z:cpdpyd < DepotCapacityy ¥V d
P

e What goes out of a depot d must come into the depot d:

prd 4= prrpm Vd
p r

Ensure that chair demand at retailer r is satisfied:

Z xpdp, - + Z xdrq, > Retailer Requirements, ¥V r
p d

Force the number of necessary trucks from plant p to depot d:

xpdp a < TruckCap - ypdy 4 V p,d

e Force the number of necessary trucks from plant p to retailer r:

xprpr < TruckCap - ypd, » ¥ p,7

Force the number of necessary trucks from depot d to retailer r:

xpdy, < TruckCap - ypdg, ¥V d,r

Notice, we keep the entire model from Chair Distribution, but add extra integer
variables, representing the trucks, forcing sufficient allocation of trucks. And
then changing the objective function to now represent the trucking costs.

The full model in Julia/JuMP, available with the name
ChairLogistics.jl

from the book web-site, is given below:

FEH A A A A A A A A A A A K HHHHAAAAAAAAA A A KA HHH A A A A A A A A A A A He He e HH A A A A A A A A A A A A e e e K
Chair Logistics Assignment, "Mathematical Programming Modelling" (42112)
using JuMP
using HiGHS
FE A Ao oA A e e oA e o A e o A Ao A e S A e A oA o A e o A e A A e o A e o A e A e Ko Kk K Kk K

TR A AT AR AAAK AR AIAAA IR KA AT A AR ATA AR FAIA A IAHAK A A A AK KK

PARAMETERS

Plants = ["P1", "P2"] # set of plants

P = length(Plants) # P is the size of the Plants set

Depots = ["D1", "D2", "D3", "D4"]

D = length(Depots)

Retailers = ["R1", "R2", "R3", "R4","R5","R6"]

R = length(Retailers)

Cap = [7500, 8500] # plant capacity in chairs

Dep = [3250, 3500, 3500, 3000] # depot capacity in chairs

Ret [1500 2500 2000 3000 2000 3000] # retatler capacity in chairs

PD_Dist = [137 92 48 173 88 109; # Distance between Plants and Depots
54 109 111 85 128 105]

PR_Dist

DR_Dist

[307 260 215 196 148 268;
234 173 194 264 204 218]

[109 58
214 163
223 173
81 51
]

65
54
97
133

89
71
239

TruckCap=40
TruckCostKM=1.5
FEoA A KA KA A A KA A KA A KA A A KA A A A A A A A KA A A A KA A A A KA A A KA A K oA

187 128 88;
26 114;
29 162;

170 155;

FEH KA oA oA A A KA KA KA A KA KA KA KA A KA KA KA KA KA A KA KA KA KA KA KA A KA KA KA KK

Model

CL = Model(HiGHS.Optimizer)

@variable(CL, xpd[p=1:P, d=1:D] >=
Ovariable(CL, xpr[p=1:P, r=1:R] >=
@variable(CL, xdr[d=1:D, r=1:R] >=
@variable(CL, ypd[p=1:P, d=1:D] >=
@variable(CL, ypr[p=1:P, r=1:R] >=
@variable(CL, ydr[d=1:D, r=1:R] >=

Minimize transporatation cost
@objective(CL, Min,

sum(TruckCostKM+PD_Dist [p,d]*ypd[p,d] for
sum(TruckCostKM+PR_Dist [p,r]*ypr[p,r] for
sum(TruckCostKM+DR_Dist[d,r]*ydr[d,r] for

)

Qconstraint(CL, [p=1:P],

@constraint (CL,

Qconstraint (CL,

@constraint (CL,

sum(xpd[p,d] for d=1:D)

[d=1:D],

sum(xdr[d,r] for r=1:R)

[d=1:D],
sum(xpd[p,d] for p=1:P)
[r=1:R],

sum(xpr[p,r] for p=1:P)

0)
0)
0)
0,
0,
0,

Int)
Int)
Int)

+ sum(xpr[p,r] for r=1:R) <= Caplpl)

<

Dep[d])

sum(xdr[d,r] for r=1:R))

+ sum(xdr([d,r] for d=1:D) == Retl[r])

Oconstraint(CL, [p=1:P, d=1:D], xpd[p,d] <= TruckCap+*ypd[p,d])

Qconstraint(CL, [p=1:P, r=1:R], xprlp,r] <= TruckCap*yprlp,r])

Q@constraint(CL, [d=1:D, r=1:R], xdr[d,r] <= TruckCap+*ydr[d,r])
print (CL)
FEA A A A A A A A A A A A A A A A A HF A A H A A e H A A A K HF A A A F A A A S H A A A A HF A A A F A A AN H A AN H e K

FEHK AR AR AR AT I AR A AT AR AR A I A A AT FA AR A F AR A KA AAKA I AR A KA K
solve

optimize! (CL)

println("Termination status: $(termination_status(CL))")

TEH AN AT AR AHAT AR FAKA IR A AT IR A KA IR AT A AR FAK AR RAHAK AR A A A KKK

FEoK K K K K K K K K K KK K K K K K K K K K K K K K K K K K 3K K K 3K K K K K K K K K K 3K K K 3K K K K K K K K K K K K K K oK K K K K K K K K K K
Report results
println("-———————————mm ")
if termination_status(CL) == MOI.OPTIMAL
println("RESULTS:")
println("objective = $(objective_value(CL))")
else
println(" No solution")
end
println("-————————————— o ")
FERAAAAAAA KA A AN AA KA HAAHAA A A AN AAAHAAHAAHAA AN AN A AN A A AA AN FN K

