Micro-Breweri

This is the first assignment that involves storage and utilization of a balance
constraint. It is important to understand this assignment since you will see
some more complicated versions of it later.

Problem

e Minimize the storage cost while satisfying the demand and planning the
production

Sets

e Months: m € Months = {jan, feb, mar, apr, may, jun, jul, aug, sep, oct, nov, dec}.

Parameters

e Demand,,: The number of liters of beer you have to deliver to the cafe’s
e BrewCap: No. of liters of beer you at most can brew pr. month
e StoreCap: No. of liters of beer you at most can store in the basement

e Cost: Cost pr. liter for storing beers in the basement (to your mum)

Decision variables

e Amount of beer produced each month m: x,,.

e Amount of beer stored each month m: y,,.

Model

Objective:

e Total storage costs to be minimized:

Z Cost - ypm,

Constraints:

e Brew capacity limitation:

Ty < BrewCap V m

e Storage capacity limitation:

Ym < StoreCap V¥V m

e Storage (balance) constraint, what goes in, must come out:
Ym—1|(m > 1) + 2, — Demand,, = ym ¥V m

The first part: y,,—1|(m > 1), inserts the storage from the previous month,
if it is not the first month. Further explanation below.

The above model has one objective function and three abstract constraints. The
two first can however just as well be implemented by setting the variables .,
and y,,. Furthermore, notice that the balance constraint, the last constraint,
links the variables and the demand, such that a separate demand constraint is
not necessary. Notice also, that the storage in the end of month m (i.e. y,,) is
equal to what was on storage at the end of the previous month (i.e. y,,—1) plus
what is produced in this month (i.e. x,,) minus what we delivered this month
(i.e. the Demand,,). It is very important that you understand this constraint
because it will show up in more complex forms in the coming assignments.

The full model in Julia/JuMP, available with the name
Microbrewery.jl

from the book web-site, is given below:

FEA A A A A A A A A A HHHAAAAAA A A A HAAAA A A A A A e e KK AAAA A A A A e S S K
MicroBreweri Assignment, "Mathematical Programming Modelling" (42112)
using JuMP

using HiGHS

A A A A A A A A A e e e e e HH A A A A A A A A e e e e e HH A A A A A A A A e e e KKK A A A A A A A S e e S

FEoA A A A e A A A A A A e e A A A A A A e A A A A A A e A A A A A A A A A H A A A A A A A A A A A A A A A A A e e A A e ok
PARAMETERS

Months = ["Jan" R "Feb" s "Mar" s "Apr" R "May" R
" Jun" R " Jul" s "Aug" s usepn R "Oct" R "Nov" s "Dec"]

prod and store data
ProdCap = 120

StoreCap = 200
StoreCostPrLiter = 1

demand from cafes of beers
Demand = [15 30 25 55 75 115 190 210 105 65 20 20]

size of sets
M = length(Months)
FEA A AN A A A A A AA A A A A A A KK A A A KA A A A K HAA A K HH A A A K FA A A K HA A AN H KA A A FA AN H AN N H KKK

TR AN AT A AAAT A A IAA AT AR AH A AT AH A I AT A AR AT AIA R IAAAK A A AN A KKK
Model
microbreweri = Model (HiGHS.Optimizer)

@variable(microbreweri, 0 <= x[1:M] <= ProdCap) # production
@variable(microbreweri, 0 <= y[1:M] <= StoreCap) # storage in the end of the month

Minimize storage cost
@objective(microbreweri, Min,
sum(StoreCostPrLiter*y[m] for m=1:M))

storage balance constraint
Q@constraint (microbreweri, [m=1:M],
y[m] == (@>1 ? y[m-1] : 0) + x[m] - Demand[m])
print (microbreweri)
TR A AR AR AR A AIAK AR A AT AR AR AR AIAKAR AR A AIAK AR A AIAK AR AR A AR AR AR A AH

FE oK o K o e o e o K o e o e o K o o o o oK oK K o e o e o e o e o K o K o oK o o oK oK K o K o e o K ok K o K o K K K o o ok oK o ok K ok K ok o ok K Ok ok K
solve

optimize! (microbreweri)

println("Termination status: $(termination_status(microbreweri))")

TR AN AT A RAAAK AT A FAAA AR IA AT A KA IR AIAH AR TAHA I RAHAK AR A AN A KKK

FE oK o K o e o e o e o e o e o K o o o o o o K o e o e o e o e o e o K o K o o o o K o e o e o e oK K o ok o K oK K o o oK oK K oK K ok K ok ok ok K ok kK K
Report results
println("————————————m— ")
if termination_status(microbreweri) == MOI.OPTIMAL
println("RESULTS:")
println("Objective: $(objective_value(microbreweri))")
for m = 1:1length(Months)

println(" production $(value(x[m])) store ¢ $(value(y[ml))™)
end
else
println(" No solution")
end
println("-——-————————————m oo ")
FE K oK K o o o e o K o o K o K o o o o o oK o o e o e o e o K o K o K o oK o o oK oK K o K o e o K o K o K o K K K o ok oK oK K oK K ok K ok ok ok ok Ok K

Comments to the Julia/JuMP program:

e Notice: The use of conditional parts of a constraint:
(m>1 ? ym-1] : 0)

e Notice: The condition means that the constraint for the first month be-
comes: (0 because there is no initial storage)

y[m] == 0 + x[m] - Demand[m])

e Notice: The condition means that the constraint for the remaining month
becomes:

y[m] == y[m-1] + x[m] - Demand [m])

The effect of the conditional part is also clear when printing the model, which
can be seen in the first constraint:

Min y[1] + y[2] + y[3] + y[4] + y[5] + y[6] + y[7] + y[8] + y[9] + y[10] + y[11] + y[12]

Subject to

y[1] - x[1] = -15

y[2]1 - y[1] - x[2] = -3@
y[31 - y[2] - x[3] = -25
y[4]1 - y[3] - x[4] = -55
y[51 - y[4] - x[5] = -75
y[6]1 - y[5]1 - x[6] = -115
y[71 - y[61 - x[7] = -19@
y[8]1 - y[7] - x[8] = -218
y[91 - y[8] - x[9] = -165

y[16] - y[9] - x[18] = -65
y[11] - y[10] - x[11] = -2@
y[12] - y[11] - x[12] = -2@
@ =< x[il = 120 v i e {1,2,.,11,12}
@ < y[il = 200 v i e {1,2,..,11,12}

